A Fast Particle Swarm Optimization Algorithm with Cauchy Mutation and Natural Selection Strategy
نویسندگان
چکیده
The standard Particle Swarm Optimization (PSO) algorithm is a novel evolutionary algorithm in which each particle studies its own previous best solution and the group’s previous best to optimize problems. One problem exists in PSO is its tendency of trapping into local optima. In this paper, a fast particle swarm optimization (FPSO) algorithm is proposed by combining PSO and the Cauchy mutation and an evolutionary selection strategy. The idea is to introduce the Cauchy mutation into PSO in the hope of preventing PSO from trapping into a local optimum through long jumps made by the Cauchy mutation. FPSO has been compared with another improved PSO called AMPSO [12] on a set of benchmark functions. The results show that FPSO is much faster than AMPSO on all the test functions.
منابع مشابه
Mix proportioning of high-performance concrete by applying the GA and PSO
High performance concrete is designed to meets special requirements such as high strength, high flowability, and high durability in large scale concrete construction. To obtain such performance many trial mixes are required to find desired combination of materials and there is no conventional way to achieve proper mix proportioning. Genetic algorithm is a global optimization technique based ...
متن کاملA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
متن کاملHybrid of Particle Swarm Optimization with Evolutionary Operators to Fragile Image Watermarking Based Dct
Particle swarm optimization (PSO) is a new promising evolutionary algorithm for the optimization and search problem. One problem of PSO is its tendency to trap into local optima due to its mechanism in information sharing. This paper proposes a novel hybrid PSO, namely (HPSO) technique by merging both a mutation operator and natural selection to solve the problem of premature convergence. By in...
متن کاملModified particle swarm optimization algorithm to solve location problems on urban transportation networks (Case study: Locating traffic police kiosks)
Nowadays, traffic congestion is a big problem in metropolises all around the world. Traffic problems rise with the rise of population and slow growth of urban transportation systems. Car accidents or population concentration in particular places due to urban events can cause traffic congestions. Such traffic problems require the direct involvement of the traffic police, and it is urgent for the...
متن کاملFast Multi-swarm Optimization with Cauchy Mutation and Crossover Operation
The standard Particle Swarm Optimization (PSO) algorithm is a novel evolutionary algorithm in which each particle studies its own previous best solution and the group’s previous best to optimize problems. One problem exists in PSO is its tendency of trapping into local optima. In this paper, a multiple swarms technique(FMSO) based on fast particle swarm optimization(FPSO) algorithm is proposed ...
متن کامل